logo of Operadia Operadia

There are 125 operads in the database.

This is just a big table, used more for testing purposes. This is not the layout I intend for the final product.

šŸ”Ž
šŸ”Ž
name abbreviations dimension OEIS dimension formula series category properties Koszul dual
Associative As, Ass, Assoc 1, 1, 1, 1, 1, 1, 1, 1, 1 OEISA000012 1 x / (1 - x) set Koszul, binary, quadratic, cyclic, Hopf As
Lie Lie 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880 OEISA000142 factorial(n - 1) -log(1 - x) vec Koszul, binary, quadratic, cyclic, NielsenSchreier Com
Pre-Lie PreLie 1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000 OEISA000169 n**(n - 1) (x * exp(-x)).reverse() vec Koszul, binary, quadratic, anticyclic, NielsenSchreier Perm
F-Manifold FMan 1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000 OEISA000169 n**(n - 1) (x * exp(-x)).reverse() Zvec binary
DoubleLie DoubleLie, Lie2 1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000 OEISA000169 n**(n - 1) (x * exp(-x)).reverse() vec Koszul, binary, quadratic Com2
Non-Associative Permutative NAP 1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000 OEISA000169 n**(n - 1) (x*exp(-x)).reverse() set Koszul, binary, quadratic NAP!
Permutative Perm 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 OEISA000027 n x*exp(x) set Koszul, binary, quadratic, anticyclic PreLie
DoubleCommutative Com2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 OEISA000027 n x*exp(x) vec Koszul, binary, quadratic DoubleLie
NAP! NAP! 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 OEISA000027 n x*exp(x) vec Koszul, binary, quadratic NAP
Commutative Com, Comm 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 OEISA000012 1 exp(x) - 1 set Koszul, binary, quadratic, Hopf, cyclic Lie
Leibniz Leib 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 OEISA000142 factorial(n) x/(1-x) vec Koszul, binary, quadratic, anticyclic Zin
Zinbiel Zin, Zinb 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 OEISA000142 factorial(n) x/(1-x) vec Koszul, binary, quadratic, anticyclic Leib
Dendriforme Dend 1, 2, 5, 14, 42, 132, 429, 1430, 4862 OEISA000108 binomial(2*n,n)/(n+1) (x/(1+x)**2).reverse() vec Koszul, binary, quadratic, anticyclic Dias
Diassociative Dias 1, 2, 3, 4, 5, 6, 7, 8, 9 OEISA000027 n x/(1-x)**2 set Koszul, binary, quadratic, anticyclic Dend
Poisson Pois, Poiss 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 OEISA000142 factorial(n) x/(1-x) Zvec Koszul, binary, quadratic, cyclic Pois
Gerstenhaber Gerst 1, 1-t, 2*t^2 - 3*t + 1, -6*t^3 + 11*t^2 - 6*t + 1 prod(1 - k*t for k in range(1,n)) dgvec Koszul, binary, quadratic, Hopf Gerst
Lambda Ī› 1, 2-t, 2*t^2 - 9*t + 9, -6*t^3 + 44*t^2 - 96*t + 64 prod(n - k*t for k in range(1, n)) dgvec binary, quadratic Pasc
Pascal Pasc 1, 2-t, 3-3*t+t^2, 4-6*t+4*t^2-t^3 (exp(x)-exp((1-t)*x))/t dgvec Ī›
Triassociative Trias 1, 3, 7, 15, 31, 63, 127, 255, 511 OEISA000225 2**n-1 x/(1-x)/(1-2*x) set binary, quadratic, Koszul Tridend
Tridendriforme Tridend 1, 3, 11, 45, 197 OEISA001003 -(-1+3*x+sqrt(1-6*x+x**2))/(4*x) Zvec binary, quadratic, Koszul Trias
K K 1, 2-t, 5-5*t+t**2, 14-21*t+9*t**2-t**3 dgvec binary, quadratic, Koszul
Diptere Dipt 1, 2, 6, 22, 90, 394, 1806 OEISA006318 (1-x-sqrt(1-6*x+x**2))/2 set Koszul, binary, quadratic Dipt!
Dual Diptere Dipt! 1, 2, 2, 2, 2, 2 OEISA040000 lambda n: 1 if n <= 1 else 2 (x+x**2)/(1-x) vec Koszul, binary, quadratic Dipt
2-associative 2as 1, 2, 6, 22, 90, 394, 1806 OEISA006318 (1-x-sqrt(1-6*x+x**2))/2 Zset Koszul, binary, quadratic, cyclic 2as!
Dual 2-associative 2as! 1, 2, 2, 2, 2, 2, 2 OEISA040000 lambda n: 1 if n <= 1 else 2 (x+x**2)/(1-x) Zvec Koszul, binary, quadratic, cyclic 2as
3-associative 3as 1, 3, 15, 93, 645, 4791, 37275, 299865 OEISA103210 set Koszul, binary, quadratic
Arbustive Arb 1, 3, 19, 195, 2791, 51303, 1152019, 30564075 OEISA048172 (log(1+x)-x**2/(1+x)).reverse() set binary, quadratic, Koszul
WithoutNPosets WNP 1, 3, 19, 195, 2791, 51303, 1152019, 30564075 OEISA048172 (log(1+x)-x**2/(1+x)).reverse() set binary, quadratic, Koszul
NablaCompatiblePosets CPāˆ‡ 1, 3, 19, 195, 2791, 51303, 1152019, 30564075 OEISA048172 (log(1+x)-x**2/(1+x)).reverse() set binary, quadratic, Koszul
Post-Lie PostLie 1, 3, 20, 210, 3024, 55440 OEISA006963 lambda n: 1 if n == 1 else factorial(2*n-1)/factorial(n) -log((1+sqrt(1-4*x))/2) vec Koszul, binary, quadratic ComTrias
Commutative-Triassociative ComTrias 1, 3, 7, 15, 31, 63, 127 OEISA000225 2**n-1 (log((1+sqrt(1+4*x))/2)).reverse() vec binary, quadratic, Koszul PostLie
Commutative-Tridendriform CTD, Pi 1, 3, 13, 75, 541, 4683 OEISA000670 (exp(x) - 1) / (2 - exp(x)) vec binary, quadratic, Koszul CTD!
Dual Commutative-Tridendriform CTD! 1, 3, 14, 90, 744 OEISA029767 factorial(n - 1) * (2**n - 1) (-(exp(-x) - 1) / (2 - exp(-x))).reverse() vec binary, quadratic, Koszul CTD
L-Dendriform L-dend 1, 4, 36, 480 vec binary, quadratic, non-Koszul
Ennea Ennea 1, 9, 113 vec
Batalin-Vilkovisky BV 1-t, (1-t)**3, (1-t)**4*(1-2*t) dgvec cyclic
Magmatic Mag, PRT 1, 1, 2, 5, 14, 42 OEISA000108 binomial(2*n-2,n-1)/n (1-sqrt(1-4*x))/2 set binary, quadratic, Koszul, free, cyclic, NielsenSchreier Nil2
2-nilpotent Nil2 1, 1, 0, 0, 0, 0 x + x**2 vec binary, quadratic, Koszul, monomial, cyclic Mag
Commutative-Magmatic ComMag, Griess 1, 1, 3, 15, 105 OEISA001147 ZZ(2*n-3).multifactorial(2) 1 - sqrt(1-2*x) set binary, quadratic, Koszul, free ComMag!
Antisymmetric-Nilpotent ComMag!, SkewNil2 1, 1, 0, 0, 0 lambda n: 1 if n <= 2 else 0 x + x**2/2 vec binary, quadratic, Koszul, monomial ComMag
Antisymmetric-Magmatic SkewMag 1, 1, 3, 15, 105 OEISA001147 ZZ(2*n-3).multifactorial(2) 1 - sqrt(1-2*x) vec binary, quadratic, Koszul, free SkewMag!
Commutative-Nilpotent SkewMag!, ComNil2 1, 1, 0, 0, 0 lambda n: 1 if n <= 2 else 0 x + x**2/2 vec binary, quadratic, Koszul, monomial SkewMag
Quadri-algebra Quad 1, 4, 23, 156, 1162 OEISA007297 sum(binomial(3*n,n+1+j)*binomial(j-1,j-n) for j in range(n,2*n))/n (x*(1-x)/(1+x)**3).reverse() vec binary, quadratic, Koszul, cyclic Quad!
Dual Quadri-algebra Quad! 1, 4, 9, 16, 25 OEISA000290 n**2 x*(1+x)/(1-x)**3 vec binary, quadratic, Koszul, cyclic Quad
Noncrossing-Plants NCP 1, 3, 14, 80, 510, 3479, 24848, 183465 OEISA121873 (x*(1-x-x**2)/(1+x)**2).reverse() set binary, quadratic, Koszul
Triplicial Trip 1, 3, 12, 55, 273, 1428 OEISA001764 binomial(3*n,n)/(2*n+1) set binary, quadratic, Koszul
Bigraft Bigraft 1, 3, 12, 55, 273, 1428 OEISA001764 binomial(3*n,n)/(2*n+1) set binary, quadratic, Koszul
Triduplicial TriDup 1, 3, 11, 45, 197, 903, 4279 OEISA001003 -(-1+3*x+sqrt(1-6*x+x**2))/(4*x) set binary, quadratic, Koszul TriDup!
Dual Triduplicial TriDup! 1, 3, 7, 15, 31, 63, 127 OEISA000225 2**n-1 1/(1-2*x)-1/(1-x) vec binary, quadratic, Koszul TriDup
Terpliciale Terp 1, 3, 11, 45, 197, 903, 4279 OEISA001003 -(-1+3*x+sqrt(1-6*x+x**2))/(4*x) set binary, quadratic, Koszul
Duplicial Dup 1, 2, 5, 14, 42, 132, 429, 1430, 4862 OEISA000108 binomial(2*n,n)/(n+1) (x/(1+x)**2).reverse() set Koszul, binary, quadratic Dup!
Dual Duplicial Dup! 1, 2, 3, 4, 5, 6 OEISA000027 n x/(1-x)**2 vec Koszul, binary, quadratic Dup
Skew Duplicial SkewDup 1, 2, 5, 14, 42, 132, 429, 1430, 4862 OEISA000108 binomial(2*n,n)/(n+1) (x/(1+x)**2).reverse() set binary, quadratic, Koszul SkewDup!
Dual Skew Duplicial SkewDup! 1, 2, 3, 4, 5, 6 OEISA000027 n x/(1-x)**2 vec binary, quadratic, Koszul SkewDup
Alternative Alt, Altern 1, 2, 7, 32, 175, 1080 OEISA161392 vec binary, quadratic, non-Koszul
Left-Alternative LeftAlt, LAlt 1, 2, 9, 60, 530, 5820 OEISA161391 vec binary, quadratic, non-Koszul
Magmatic-Fine MagFine 1, 0, 1, 2, 6, 18, 57, 186, 622, 2120, 7338 OEISA000957 (1+2*x-sqrt(1-4*x))/(2*(2+x)) vec quadratic, Koszul, free MagFine!
Dual Magmatic-Fine MagFine! 1, 0, 1, 2, 3, 4 x + x**3/(1-x)**2 vec quadratic, Koszul MagFine
Brace Brace 1, 2, 12, 120, 1680, 30240, 665280 OEISA001813 binomial(2*n-2,n-1)/(n)*factorial(n) (1-sqrt(1-4*x))/2 vec
Moufang Moufang 1, 2, 7, 40 vec binary, cubic
Malcev Malcev 1, 1, 3, 10, 44, 210, 1112, 6636 vec
Novikov Novikov 1, 2, 6, 20, 70, 252, 924 OEISA000984 binomial(2*n-2,n-1) vec binary, quadratic, non-Koszul
Akivis Akivis 1, 1, 8 vec free
Sabinin Sabinin 1, 1, 8, 78, 1104 log(1+(1-sqrt(1-4*x))/2) vec free
Jordan triple JordanTriple 1, 0, 3, 0, 55, 0 vec quadratic, ternary
Jordan Jordan 1, 1, 3, 11, 55, 330, 2345, 19089 OEISA001776 vec quadratic, cyclic
Totally-Associative Ternary tAs-3 1, 0, 1, 0, 1, 0, 1 OEISA000035 x/(1-x**2) set ternary, quadratic
semi-Heap semiHeap 1, 0, 6, 0, 120 set ternary, quadratic
Partially-Associative Ternary pAs-3 1, 0, 1, 0, 2, 0, 5, 0, 14 OEISA126120 vec ternary, quadratic
Lie Triple LTS, LieTriple 1, 0, 2, 0, 24, 0, 720 OEISA005359 lambda n: factorial(n-1) if n % 2 == 1 else 0 vec ternary, quadratic, Koszul
Lie-Yamaguti LieYamaguti, LY 1, 1, 5 vec
Interchange Interchange 1, 4 set binary, cubic
Level level 1, 1, 3, 13, 75, 525, 4347, 41245, 441675 OEISA007178 set binary, cubic
Hypercommutative HyperCom, HyperComm 1, 1, 1+t**2, 1+5*t**2+t**4, 1+16*t**2+16*t**4+t**6, 1+42*t**2+127*t**4+42*t**6+t**8, 1+99*t**2+715*t**4+715*t**6+99*t**8+t**10 OEISA074060 dgvec quadratic, Koszul Gravity
2-Gerstenhaber 2-Gerst 1, 1, -t + 1, -4*t + 1, 9*t^2 - 10*t + 1, 64*t^2 - 20*t + 1 prod(1-(n-2-k)**2 * t for k in range(0,n-2,2)) dgvec quadratic
Gravity Gravity 1, 1, - 2*t + 1, 6*t^2 - 5*t + 1, -24*t^3 + 26*t^2 - 9*t + 1 prod(1 - k*t for k in range(2, n)) dgvec quadratic, Koszul HyperCom
Alia Alia 1, 2, 11, 100, 1270, 20720, 413000 OEISA220433 (x-x**2+x**3/6).reverse() vec binary, quadratic, Koszul, NielsenSchreier Alia!
Lie-admissible LieAdm 1, 2, 11, 101, 1299, 21484, 434314 OEISA337017 (1-(-x).exp()-x**2/2).reverse() vec binary, quadratic, Koszul LieAdm!
Third-Power-Associative 3PowAss 1, 2, 11, 100, 1270, 20720, 413000 OEISA220433 (x-x**2+x**3/6).reverse() vec binary, quadratic
V V 1, 0, -t, 0, 2*t**2, 0, -5*t**3, 0, 14*t**4 dgvec ternary, quadratic, anticyclic, Koszul
Hochschild Hoch 1, 2, 6, 22, 90, 394, 1806 OEISA006318 (1-x-sqrt(1-6*x+x**2))/2 vec binary, quadratic, Koszul, cyclic Hoch!
Dual Hochschild Hoch! 1, 2, 2, 2, 2, 2, 2 OEISA040000 lambda n: 1 if n <= 1 else 2 (x+x**2)/(1-x) vec binary, quadratic, Koszul, cyclic Hoch
Left-Nilpotent LeftNil 1, 1, 1, 1, 1, 1 OEISA000012 1 x/(1-x) vec Koszul, binary, quadratic, monomial LeftNil
RW FF4, GR4, RW 1, 4, 24, 176, 1440, 12608 OEISA156017 -1/2*x - 1/4*sqrt(4*x**2 - 12*x + 1) + 1/4 set binary, quadratic, Koszul
RWT RWT 1, 3, 13, 68, 395, 2450, 15892, 106489 OEISA200757 set binary, quadratic, Koszul
RWT-Sigma RWT-Sigma 1, 3, 16, 133, 1521, 22184 OEISA048802 set binary
Noncrossing Trees NCT, RWD 1, 2, 7, 30, 143, 728, 3876, 21318 OEISA006013 binomial(3*n-2,n-1)/n (x*(1-x)**2).reverse() Zset binary, quadratic, Koszul
Hybridative Hyb 1, 2, 7, 31, 154, 820, 4575, 26398 OEISA007863 sum(binomial(n+k-1,k)*binomial(n+k,n-1-k) for k in range(n))/n Zset binary, quadratic, cyclic, Koszul
Bicolored Noncrossing Configurations BNC 1, 8, 80, 992, 13760, 204416 OEISA234596 1/6*(1-4*x-(1-20*x+4*x^2).sqrt()) set binary, quadratic, Koszul
FF6 FF6 1, 6, 56, 640, 8158, 111258, 1588544, 23446248 OEISA231690 (x*(1-3*x-x**2+x**3)/(1+3*x+x**2-x**3)).reverse() set binary, quadratic, Koszul
noncommutative HyperCom ncHyperCom 1, 1, 2, 5, 14, 42, 132 OEISA000108 binomial(2*n-2, n-1)/n dgvec quadratic, Koszul ncGrav
noncommutative Gerstenhaber ncGerst 1, 1 - t, 1-2*t+t**2 dgvec binary, quadratic, Koszul ncGerst
noncommutative Gravity ncGrav 1, 1, 2, 4, 8, 16, 32 OEISA011782 lambda n: 1 if n == 1 else 2**(n-2) dgvec quadratic, Koszul ncHyperCom
noncommutative 2-Gerstenhaber 2-ncGerst 1, 1, 2, 3, 6, 10, 20 OEISA001405 binomial(n-1,(n-1)//2) dgvec quadratic
Directed Animals DA 1, 2, 5, 13, 35, 96, 267, 750, 2123, 6046 OEISA005773 (1-3*x-(1-2*x-3*x**2).sqrt())/(6*x-2) set binary
Bol Bol 1, 1, 5 vec
Assosymetrique AssoSym 1, 2, 7, 29, 136, 762, 5139, 40539 factorial(n)+2**n-binomial(n+1,2)-1 vec binary, quadratic, non-Koszul
column-convex polyominos CoCoPoly 1, 1, 3, 12, 54, 260, 1310, 6821, 36413 set free
Tamari intervalles Tamarint 1, 1, 3, 13, 68, 399, 2530, 16965 OEISA000260 binomial(4*n - 2, n) / ((2*n - 1) * (3*n - 1)) set free
Free(NovExc) Free(NovExc) 1, 1, 3, 13, 66, 366, 2148, 13115 OEISA219537 x+x*(x/(1+x)**2/(1+x+x**2)).reverse() set free
Free(ModSyn) Free(ModSyn) 1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, 1430715 OEISA001764 set free
As(2) As(2) 1, 2, 4, 8, 16, 32 OEISA000079 2**(n-1) Zset Koszul, binary, quadratic As(2)
As2 As2 1, 2, 5, 14, 42, 132, 429, 1430, 4862 OEISA000108 binomial(2*n,n)/(n+1) (x/(1+x)**2).reverse() Zvec Koszul, binary, quadratic, cyclic
Nijenhuis Nij 1, 2 - t dgvec Koszul, binary, quadratic
Structurable Struc 1, 0, 6, 0 vec ternary, quadratic
Groupale Gr 2, 8, 48, 384 OEISA000165 factorial(n) * 2**n set
Bessel Bess 1, 1-t, 1-3*t+3*t**2, 1-6*t+15*t**2-15*t**3 dgvec binary, quadratic, Hopf, Koszul
Ramanujan Ram 1, 2 - t, 6 - 8*t + 3*t**2, 24 -58*t + 50*t**2 - 15*t**3 ((1-t)*x/(1+x) + t*ln(1+x)).reverse() dgvec binary, quadratic, Hopf, Koszul Ram!
Dual Ramanujan Ram! 1, 2-t (1-t)*x/(1-x) - t*ln(1-x) dgvec binary, quadratic, Koszul Ram
Di-alternative DiAlt 1, 4, 21, 72, 360 vec binary, quadratic, non-Koszul
pre-Associative PreAs 1, 2, 6, 21, 80, 322, 1347, 5798, 25512, 114236 OEISA106228 set binary, quadratic, non-Koszul
mock-dendriforme mockDend 1, 4, 30, 336, 5040 OEISA001761 factorial(n) * catalan_number(n) Zvec binary, quadratic, Koszul, cyclic
BinaryLie BinLie 1, 1, 3, 13, 75, 525, 4249 vec binary, cubic
Sagle Sagle 1, 3, 11, 55, 330, 2345, 19088 vec binary, cubic
Dual Lie-admissible LieAdm! 1, 2, 1, 1, 1, 1 OEISA294619 lambda n: 2 if n == 2 else 1 x.exp()+x**2/2-1 set binary, quadratic, Koszul, monomial LieAdm
Greg Greg 1, 3, 22, 262, 4336, 91984 OEISA005264 ((1+2*x)*(-x).exp()-1).reverse() Zvec binary, quadratic, Koszul, NielsenSchreier Greg!
Dual Greg Greg! 1, 3, 5, 7, 9, 11 OEISA005408 2 * n - 1 (2*x-1)*x.exp()+1 Zvec binary, quadratic, Koszul Greg
Dual Alia Alia! 1, 2, 1, 0, 0, 0 x+x**2+x**3/6 vec binary, quadratic, Koszul Alia
Commutative Pre-Lie ComPreLie 1, 3, 19, 189, 2576, 44683 OEISA052888 (log(1+x)*exp(-x)).reverse() Zvec binary, quadratic
Lie-Griess LieGriess 1, 1 - t, 2 - 5*t + 3*t^2, 6 - 26*t + 35*t^2 - 15*t^3 (-(1-t)*(exp(-x)-1)+x*t).reverse() dgvec binary, quadratic, Koszul LieGriess!
Dual Lie-Griess LieGriess! 1, 1 - t, 1 - t, 1 - t (1-t)*(exp(x)-1)+x*t dgvec binary, quadratic, Koszul LieGriess
Flexible Flex 1, 2, 9, 61, 545, 5986 OEISA370161 vec binary, quadratic, non-Koszul
Flexible Lie-Admissible FlexLieAdm 1, 2, 8, 48, 384, 3841 OEISA370677 vec binary, quadratic, non-Koszul
CoupledNilpotent CNilp 1, 2, 1, 0, 0, 0, 0 x * (1+x) * (1+x) Zvec binary, quadratic, Koszul, cyclic CMag
CoupledMagmatic CMag 1, 2, 7, 30, 143, 728, 3876 OEISA006013 binomial(3*n-2,n-1)/n (x * (1-x) * (1-x)).reverse() Zvec binary, quadratic, Koszul, cyclic CNilp