logo of Operadia Operadia

There are 126 operads in the database.

This is just a big table, used more for testing purposes. This is not the layout I intend for the final product.

šŸ”Ž
šŸ”Ž
name abbreviations dimension OEIS dimension formula series category symetrie properties Koszul dual
Associative As, Ass, Assoc 1, 1, 1, 1, 1, 1, 1, 1, 1 OEISA000012 1 x / (1 - x) set non-symetrique Koszul, binary, quadratic, cyclic, Hopf As
Lie Lie 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880 OEISA000142 factorial(n - 1) -log(1 - x) vec symetrique Koszul, binary, quadratic, cyclic, NielsenSchreier Com
Pre-Lie PreLie 1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000 OEISA000169 n**(n - 1) (x * exp(-x)).reverse() vec symetrique Koszul, binary, quadratic, anticyclic, NielsenSchreier Perm
F-Manifold FMan 1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000 OEISA000169 n**(n - 1) (x * exp(-x)).reverse() Zvec symetrique binary
DoubleLie DoubleLie, Lie2 1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000 OEISA000169 n**(n - 1) (x * exp(-x)).reverse() vec symetrique Koszul, binary, quadratic Com2
Non-Associative Permutative NAP 1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000 OEISA000169 n**(n - 1) (x*exp(-x)).reverse() set symetrique Koszul, binary, quadratic NAP!
Permutative Perm 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 OEISA000027 n x*exp(x) set symetrique Koszul, binary, quadratic, anticyclic PreLie
DoubleCommutative Com2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 OEISA000027 n x*exp(x) vec symetrique Koszul, binary, quadratic DoubleLie
NAP! NAP! 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 OEISA000027 n x*exp(x) vec symetrique Koszul, binary, quadratic NAP
Commutative Com, Comm 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 OEISA000012 1 exp(x) - 1 set symetrique Koszul, binary, quadratic, Hopf, cyclic Lie
Leibniz Leib 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 OEISA000142 factorial(n) x/(1-x) vec symetrique Koszul, binary, quadratic, anticyclic Zin
Zinbiel Zin, Zinb 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 OEISA000142 factorial(n) x/(1-x) vec symetrique Koszul, binary, quadratic, anticyclic Leib
Dendriforme Dend 1, 2, 5, 14, 42, 132, 429, 1430, 4862 OEISA000108 binomial(2*n,n)/(n+1) (x/(1+x)**2).reverse() vec non-symetrique Koszul, binary, quadratic, anticyclic Dias
Diassociative Dias 1, 2, 3, 4, 5, 6, 7, 8, 9 OEISA000027 n x/(1-x)**2 set non-symetrique Koszul, binary, quadratic, anticyclic Dend
Poisson Pois, Poiss 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 OEISA000142 factorial(n) x/(1-x) Zvec symetrique Koszul, binary, quadratic, cyclic Pois
Gerstenhaber Gerst 1, 1-t, 2*t^2 - 3*t + 1, -6*t^3 + 11*t^2 - 6*t + 1 prod(1 - k*t for k in range(1,n)) dgvec symetrique Koszul, binary, quadratic, Hopf Gerst
Lambda Ī› 1, 2-t, 2*t^2 - 9*t + 9, -6*t^3 + 44*t^2 - 96*t + 64 prod(n - k*t for k in range(1, n)) dgvec symetrique binary, quadratic Pasc
Pascal Pasc 1, 2-t, 3-3*t+t^2, 4-6*t+4*t^2-t^3 (exp(x)-exp((1-t)*x))/t dgvec symetrique Ī›
Triassociative Trias 1, 3, 7, 15, 31, 63, 127, 255, 511 OEISA000225 2**n-1 x/(1-x)/(1-2*x) set non-symetrique binary, quadratic, Koszul Tridend
Tridendriforme Tridend 1, 3, 11, 45, 197 OEISA001003 -(-1+3*x+sqrt(1-6*x+x**2))/(4*x) Zvec non-symetrique binary, quadratic, Koszul Trias
K K 1, 2-t, 5-5*t+t**2, 14-21*t+9*t**2-t**3 dgvec non-symetrique binary, quadratic, Koszul
Diptere Dipt 1, 2, 6, 22, 90, 394, 1806 OEISA006318 (1-x-sqrt(1-6*x+x**2))/2 set non-symetrique Koszul, binary, quadratic Dipt!
Dual Diptere Dipt! 1, 2, 2, 2, 2, 2 OEISA040000 lambda n: 1 if n <= 1 else 2 (x+x**2)/(1-x) vec non-symetrique Koszul, binary, quadratic Dipt
2-associative 2as 1, 2, 6, 22, 90, 394, 1806 OEISA006318 (1-x-sqrt(1-6*x+x**2))/2 Zset non-symetrique Koszul, binary, quadratic, cyclic 2as!
Dual 2-associative 2as! 1, 2, 2, 2, 2, 2, 2 OEISA040000 lambda n: 1 if n <= 1 else 2 (x+x**2)/(1-x) Zvec non-symetrique Koszul, binary, quadratic, cyclic 2as
3-associative 3as 1, 3, 15, 93, 645, 4791, 37275, 299865 OEISA103210 set non-symetrique Koszul, binary, quadratic
Arbustive Arb 1, 3, 19, 195, 2791, 51303, 1152019, 30564075 OEISA048172 (log(1+x)-x**2/(1+x)).reverse() set symetrique binary, quadratic, Koszul
WithoutNPosets WNP 1, 3, 19, 195, 2791, 51303, 1152019, 30564075 OEISA048172 (log(1+x)-x**2/(1+x)).reverse() set symetrique binary, quadratic, Koszul
NablaCompatiblePosets CPāˆ‡ 1, 3, 19, 195, 2791, 51303, 1152019, 30564075 OEISA048172 (log(1+x)-x**2/(1+x)).reverse() set symetrique binary, quadratic, Koszul
Post-Lie PostLie 1, 3, 20, 210, 3024, 55440 OEISA006963 lambda n: 1 if n == 1 else factorial(2*n-1)/factorial(n) -log((1+sqrt(1-4*x))/2) vec symetrique Koszul, binary, quadratic ComTrias
Commutative-Triassociative ComTrias 1, 3, 7, 15, 31, 63, 127 OEISA000225 2**n-1 (log((1+sqrt(1+4*x))/2)).reverse() vec symetrique binary, quadratic, Koszul PostLie
Commutative-Tridendriform CTD, Pi 1, 3, 13, 75, 541, 4683 OEISA000670 (exp(x) - 1) / (2 - exp(x)) vec symetrique binary, quadratic, Koszul CTD!
Dual Commutative-Tridendriform CTD! 1, 3, 14, 90, 744 OEISA029767 factorial(n - 1) * (2**n - 1) (-(exp(-x) - 1) / (2 - exp(-x))).reverse() vec symetrique binary, quadratic, Koszul CTD
L-Dendriform L-dend 1, 4, 36, 480 vec symetrique binary, quadratic, non-Koszul
Ennea Ennea 1, 9, 113 vec non-symetrique
Batalin-Vilkovisky BV 1-t, (1-t)**3, (1-t)**4*(1-2*t) dgvec symetrique cyclic
Magmatic Mag, PRT 1, 1, 2, 5, 14, 42 OEISA000108 binomial(2*n-2,n-1)/n (1-sqrt(1-4*x))/2 set non-symetrique binary, quadratic, Koszul, free, cyclic, NielsenSchreier Nil2
2-nilpotent Nil2 1, 1, 0, 0, 0, 0 x + x**2 vec non-symetrique binary, quadratic, Koszul, monomial, cyclic Mag
Commutative-Magmatic ComMag, Griess 1, 1, 3, 15, 105 OEISA001147 ZZ(2*n-3).multifactorial(2) 1 - sqrt(1-2*x) set symetrique binary, quadratic, Koszul, free ComMag!
Antisymmetric-Nilpotent ComMag!, SkewNil2 1, 1, 0, 0, 0 lambda n: 1 if n <= 2 else 0 x + x**2/2 vec symetrique binary, quadratic, Koszul, monomial ComMag
Antisymmetric-Magmatic SkewMag 1, 1, 3, 15, 105 OEISA001147 ZZ(2*n-3).multifactorial(2) 1 - sqrt(1-2*x) vec symetrique binary, quadratic, Koszul, free SkewMag!
Commutative-Nilpotent SkewMag!, ComNil2 1, 1, 0, 0, 0 lambda n: 1 if n <= 2 else 0 x + x**2/2 vec symetrique binary, quadratic, Koszul, monomial SkewMag
Quadri-algebra Quad 1, 4, 23, 156, 1162 OEISA007297 sum(binomial(3*n,n+1+j)*binomial(j-1,j-n) for j in range(n,2*n))/n (x*(1-x)/(1+x)**3).reverse() vec non-symetrique binary, quadratic, Koszul, cyclic Quad!
Dual Quadri-algebra Quad! 1, 4, 9, 16, 25 OEISA000290 n**2 x*(1+x)/(1-x)**3 vec non-symetrique binary, quadratic, Koszul, cyclic Quad
Noncrossing-Plants NCP 1, 3, 14, 80, 510, 3479, 24848, 183465 OEISA121873 (x*(1-x-x**2)/(1+x)**2).reverse() set non-symetrique binary, quadratic, Koszul
Triplicial Trip 1, 3, 12, 55, 273, 1428 OEISA001764 binomial(3*n,n)/(2*n+1) set non-symetrique binary, quadratic, Koszul
Bigraft Bigraft 1, 3, 12, 55, 273, 1428 OEISA001764 binomial(3*n,n)/(2*n+1) set non-symetrique binary, quadratic, Koszul
Triduplicial TriDup 1, 3, 11, 45, 197, 903, 4279 OEISA001003 -(-1+3*x+sqrt(1-6*x+x**2))/(4*x) set non-symetrique binary, quadratic, Koszul TriDup!
Dual Triduplicial TriDup! 1, 3, 7, 15, 31, 63, 127 OEISA000225 2**n-1 1/(1-2*x)-1/(1-x) vec non-symetrique binary, quadratic, Koszul TriDup
Terpliciale Terp 1, 3, 11, 45, 197, 903, 4279 OEISA001003 -(-1+3*x+sqrt(1-6*x+x**2))/(4*x) set non-symetrique binary, quadratic, Koszul
Duplicial Dup 1, 2, 5, 14, 42, 132, 429, 1430, 4862 OEISA000108 binomial(2*n,n)/(n+1) (x/(1+x)**2).reverse() set non-symetrique Koszul, binary, quadratic Dup!
Dual Duplicial Dup! 1, 2, 3, 4, 5, 6 OEISA000027 n x/(1-x)**2 vec non-symetrique Koszul, binary, quadratic Dup
Skew Duplicial SkewDup 1, 2, 5, 14, 42, 132, 429, 1430, 4862 OEISA000108 binomial(2*n,n)/(n+1) (x/(1+x)**2).reverse() set non-symetrique binary, quadratic, Koszul SkewDup!
Dual Skew Duplicial SkewDup! 1, 2, 3, 4, 5, 6 OEISA000027 n x/(1-x)**2 vec non-symetrique binary, quadratic, Koszul SkewDup
Alternative Alt, Altern 1, 2, 7, 32, 175, 1080, 7294 OEISA161392 vec symetrique binary, quadratic, non-Koszul
Left-Alternative LeftAlt, LAlt 1, 2, 9, 60, 530, 5820 OEISA161391 vec symetrique binary, quadratic, non-Koszul
Magmatic-Fine MagFine 1, 0, 1, 2, 6, 18, 57, 186, 622, 2120, 7338 OEISA000957 (1+2*x-sqrt(1-4*x))/(2*(2+x)) vec non-symetrique quadratic, Koszul, free MagFine!
Dual Magmatic-Fine MagFine! 1, 0, 1, 2, 3, 4 x + x**3/(1-x)**2 vec non-symetrique quadratic, Koszul MagFine
Brace Brace 1, 2, 12, 120, 1680, 30240, 665280 OEISA001813 binomial(2*n-2,n-1)/(n)*factorial(n) (1-sqrt(1-4*x))/2 vec symetrique
Moufang Moufang 1, 2, 7, 40 vec non-symetrique binary, cubic
Malcev Malcev 1, 1, 3, 10, 44, 210, 1112, 6636 vec symetrique
Novikov Novikov 1, 2, 6, 20, 70, 252, 924 OEISA000984 binomial(2*n-2,n-1) vec symetrique binary, quadratic, non-Koszul
Akivis Akivis 1, 1, 8 vec symetrique free
Sabinin Sabinin 1, 1, 8, 78, 1104 log(1+(1-sqrt(1-4*x))/2) vec symetrique free
Jordan triple JordanTriple 1, 0, 3, 0, 55, 0 vec symetrique quadratic, ternary
Jordan Jordan 1, 1, 3, 11, 55, 330, 2345, 19089, 175203, 1785840 OEISA001776 vec symetrique binary, cubic, cyclic
Totally-Associative Ternary tAs-3 1, 0, 1, 0, 1, 0, 1 OEISA000035 x/(1-x**2) set non-symetrique ternary, quadratic
semi-Heap semiHeap 1, 0, 6, 0, 120 set symetrique ternary, quadratic
Partially-Associative Ternary pAs-3 1, 0, 1, 0, 2, 0, 5, 0, 14 OEISA126120 vec non-symetrique ternary, quadratic
Lie Triple LTS, LieTriple 1, 0, 2, 0, 24, 0, 720 OEISA005359 lambda n: factorial(n-1) if n % 2 == 1 else 0 vec symetrique ternary, quadratic, Koszul
Lie-Yamaguti LieYamaguti, LY 1, 1, 5 vec symetrique
Interchange Interchange 1, 4 set symetrique binary, cubic
Level level 1, 1, 3, 13, 75, 525, 4347, 41245, 441675 OEISA007178 set symetrique binary, cubic
Hypercommutative HyperCom, HyperComm 1, 1, 1+t**2, 1+5*t**2+t**4, 1+16*t**2+16*t**4+t**6, 1+42*t**2+127*t**4+42*t**6+t**8, 1+99*t**2+715*t**4+715*t**6+99*t**8+t**10 OEISA074060 dgvec symetrique quadratic, Koszul Gravity
2-Gerstenhaber 2-Gerst 1, 1, -t + 1, -4*t + 1, 9*t^2 - 10*t + 1, 64*t^2 - 20*t + 1 prod(1-(n-2-k)**2 * t for k in range(0,n-2,2)) dgvec symetrique quadratic
Gravity Gravity 1, 1, - 2*t + 1, 6*t^2 - 5*t + 1, -24*t^3 + 26*t^2 - 9*t + 1 prod(1 - k*t for k in range(2, n)) dgvec symetrique quadratic, Koszul HyperCom
Alia Alia 1, 2, 11, 100, 1270, 20720, 413000 OEISA220433 (x-x**2+x**3/6).reverse() vec symetrique binary, quadratic, Koszul, NielsenSchreier Alia!
Lie-admissible LieAdm 1, 2, 11, 101, 1299, 21484, 434314 OEISA337017 (1-(-x).exp()-x**2/2).reverse() vec symetrique binary, quadratic, Koszul LieAdm!
Third-Power-Associative 3PowAss 1, 2, 11, 100, 1270, 20720, 413000 OEISA220433 (x-x**2+x**3/6).reverse() vec symetrique binary, quadratic
V V 1, 0, -t, 0, 2*t**2, 0, -5*t**3, 0, 14*t**4 dgvec non-symetrique ternary, quadratic, anticyclic, Koszul
Hochschild Hoch 1, 2, 6, 22, 90, 394, 1806 OEISA006318 (1-x-sqrt(1-6*x+x**2))/2 vec non-symetrique binary, quadratic, Koszul, cyclic Hoch!
Dual Hochschild Hoch! 1, 2, 2, 2, 2, 2, 2 OEISA040000 lambda n: 1 if n <= 1 else 2 (x+x**2)/(1-x) vec non-symetrique binary, quadratic, Koszul, cyclic Hoch
Left-Nilpotent LeftNil 1, 1, 1, 1, 1, 1 OEISA000012 1 x/(1-x) vec non-symetrique Koszul, binary, quadratic, monomial LeftNil
RW FF4, GR4, RW 1, 4, 24, 176, 1440, 12608 OEISA156017 -1/2*x - 1/4*sqrt(4*x**2 - 12*x + 1) + 1/4 set non-symetrique binary, quadratic, Koszul
RWT RWT 1, 3, 13, 68, 395, 2450, 15892, 106489 OEISA200757 set non-symetrique binary, quadratic, Koszul
RWT-Sigma RWT-Sigma 1, 3, 16, 133, 1521, 22184 OEISA048802 set symetrique binary
Noncrossing Trees NCT, RWD 1, 2, 7, 30, 143, 728, 3876, 21318 OEISA006013 binomial(3*n-2,n-1)/n (x*(1-x)**2).reverse() Zset non-symetrique binary, quadratic, Koszul
Hybridative Hyb 1, 2, 7, 31, 154, 820, 4575, 26398 OEISA007863 sum(binomial(n+k-1,k)*binomial(n+k,n-1-k) for k in range(n))/n Zset non-symetrique binary, quadratic, cyclic, Koszul
Bicolored Noncrossing Configurations BNC 1, 8, 80, 992, 13760, 204416 OEISA234596 1/6*(1-4*x-(1-20*x+4*x^2).sqrt()) set non-symetrique binary, quadratic, Koszul
FF6 FF6 1, 6, 56, 640, 8158, 111258, 1588544, 23446248 OEISA231690 (x*(1-3*x-x**2+x**3)/(1+3*x+x**2-x**3)).reverse() set non-symetrique binary, quadratic, Koszul
noncommutative HyperCom ncHyperCom 1, 1, 2, 5, 14, 42, 132 OEISA000108 binomial(2*n-2, n-1)/n dgvec non-symetrique quadratic, Koszul ncGrav
noncommutative Gerstenhaber ncGerst 1, 1 - t, 1-2*t+t**2 dgvec non-symetrique binary, quadratic, Koszul ncGerst
noncommutative Gravity ncGrav 1, 1, 2, 4, 8, 16, 32 OEISA011782 lambda n: 1 if n == 1 else 2**(n-2) dgvec non-symetrique quadratic, Koszul ncHyperCom
noncommutative 2-Gerstenhaber 2-ncGerst 1, 1, 2, 3, 6, 10, 20 OEISA001405 binomial(n-1,(n-1)//2) dgvec non-symetrique quadratic
Directed Animals DA 1, 2, 5, 13, 35, 96, 267, 750, 2123, 6046 OEISA005773 (1-3*x-(1-2*x-3*x**2).sqrt())/(6*x-2) set non-symetrique binary
Bol Bol 1, 1, 5 vec symetrique
Assosymetrique AssoSym 1, 2, 7, 29, 136, 762, 5139, 40539 factorial(n)+2**n-binomial(n+1,2)-1 vec symetrique binary, quadratic, non-Koszul
column-convex polyominos CoCoPoly 1, 1, 3, 12, 54, 260, 1310, 6821, 36413 set non-symetrique free
Tamari intervalles Tamarint 1, 1, 3, 13, 68, 399, 2530, 16965 OEISA000260 binomial(4*n - 2, n) / ((2*n - 1) * (3*n - 1)) set non-symetrique free
Free(NovExc) Free(NovExc) 1, 1, 3, 13, 66, 366, 2148, 13115 OEISA219537 x+x*(x/(1+x)**2/(1+x+x**2)).reverse() set non-symetrique free
Free(ModSyn) Free(ModSyn) 1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, 1430715 OEISA001764 set non-symetrique free
As(2) As(2) 1, 2, 4, 8, 16, 32 OEISA000079 2**(n-1) Zset non-symetrique Koszul, binary, quadratic As(2)
As2 As2 1, 2, 5, 14, 42, 132, 429, 1430, 4862 OEISA000108 binomial(2*n,n)/(n+1) (x/(1+x)**2).reverse() Zvec non-symetrique Koszul, binary, quadratic, cyclic
Nijenhuis Nij 1, 2 - t dgvec symetrique Koszul, binary, quadratic
Structurable Struc 1, 0, 6, 0 vec symetrique ternary, quadratic
Groupale Gr 2, 8, 48, 384 OEISA000165 factorial(n) * 2**n set symetrique
Bessel Bess 1, 1-t, 1-3*t+3*t**2, 1-6*t+15*t**2-15*t**3 dgvec symetrique binary, quadratic, Hopf, Koszul
Ramanujan Ram 1, 2 - t, 6 - 8*t + 3*t**2, 24 -58*t + 50*t**2 - 15*t**3 ((1-t)*x/(1+x) + t*ln(1+x)).reverse() dgvec symetrique binary, quadratic, Hopf, Koszul Ram!
Dual Ramanujan Ram! 1, 2-t (1-t)*x/(1-x) - t*ln(1-x) dgvec symetrique binary, quadratic, Koszul Ram
Di-alternative DiAlt 1, 4, 21, 72, 360 vec symetrique binary, quadratic, non-Koszul
pre-Associative PreAs 1, 2, 6, 21, 80, 322, 1347, 5798, 25512, 114236 OEISA106228 set non-symetrique binary, quadratic, non-Koszul
mock-dendriforme mockDend 1, 4, 30, 336, 5040 OEISA001761 factorial(n) * catalan_number(n) Zvec symetrique binary, quadratic, Koszul, cyclic
BinaryLie BinLie 1, 1, 3, 13, 75, 525, 4249 vec symetrique binary, cubic
Sagle Sagle 1, 3, 11, 55, 330, 2345, 19088 vec symetrique binary, cubic
Dual Lie-admissible LieAdm! 1, 2, 1, 1, 1, 1 OEISA294619 lambda n: 2 if n == 2 else 1 x.exp()+x**2/2-1 set symetrique binary, quadratic, Koszul, monomial LieAdm
Greg Greg 1, 3, 22, 262, 4336, 91984 OEISA005264 ((1+2*x)*(-x).exp()-1).reverse() Zvec symetrique binary, quadratic, Koszul, NielsenSchreier Greg!
Dual Greg Greg! 1, 3, 5, 7, 9, 11 OEISA005408 2 * n - 1 (2*x-1)*x.exp()+1 Zvec symetrique binary, quadratic, Koszul Greg
Dual Alia Alia! 1, 2, 1, 0, 0, 0 x+x**2+x**3/6 vec symetrique binary, quadratic, Koszul Alia
Commutative Pre-Lie ComPreLie 1, 3, 19, 189, 2576, 44683 OEISA052888 (log(1+x)*exp(-x)).reverse() Zvec symetrique binary, quadratic
Lie-Griess LieGriess 1, 1 - t, 2 - 5*t + 3*t^2, 6 - 26*t + 35*t^2 - 15*t^3 (-(1-t)*(exp(-x)-1)+x*t).reverse() dgvec symetrique binary, quadratic, Koszul LieGriess!
Dual Lie-Griess LieGriess! 1, 1 - t, 1 - t, 1 - t (1-t)*(exp(x)-1)+x*t dgvec symetrique binary, quadratic, Koszul LieGriess
Flexible Flex 1, 2, 9, 61, 545, 5986 OEISA370161 vec symetrique binary, quadratic, non-Koszul
Flexible Lie-Admissible FlexLieAdm 1, 2, 8, 48, 384, 3841 OEISA370677 vec symetrique binary, quadratic, non-Koszul
CoupledNilpotent CNilp 1, 2, 1, 0, 0, 0, 0 x * (1+x) * (1+x) Zvec non-symetrique binary, quadratic, Koszul, cyclic CMag
CoupledMagmatic CMag 1, 2, 7, 30, 143, 728, 3876 OEISA006013 binomial(3*n-2,n-1)/n (x * (1-x) * (1-x)).reverse() Zvec non-symetrique binary, quadratic, Koszul, cyclic CNilp
MetabelianLie MetabelianLie 1, 1, 2, 3, 4, 5 OEISA028310 lambda n: 1 if n <= 2 else n - 1 1 + x + (x - 1)*exp(x) vec symetrique binary, cubic